Work Capacity Evaluation

Professor Alan Hedge

DEA 3250/6510

Estimating Work Energy Demands

- All mechanical work involves muscles.
- Muscular effort depends on:
*Duration - how long the continuous period of muscle contraction is (total time per minute that muscles are contracted)
\star Frequency - how often the muscle contracts (number of work cycles per unit time).
$*$ Intensity - the strength and oxygen requirements of work (light, moderate, heavy).
- Together, the above define the pattern of work.

Energy Demands and Blood Flow

- Dynamic work requires more blood but muscle activity aids blood flow to meet demand.

Static Work

- Muscle strength diminishes rapidly with static loading.

Energy Processes

- Carbohydrates and fats are necessary for work and are "burned" to produce energy.
- Aerobic processes (aerobic glycolysis) - biochemical energy generating processes that require oxygen $\left(\mathrm{O}_{2}\right)$.
- Anaerobic processes (anaerobic glycolysis) - biochemical energy generating processes that don't require oxygen.
- Myoglobin - molecule in muscle that stores oxygen that can be utilized for short, intense periods of work < 1 minute.

Oxygen Debt

- Oxygen debt is the demand for oxygen at the start of muscle activity > oxygen from the circulatory system alone, because it takes time for the circulatory system to increase it's supply.
- Oxygen debt is "repaid" after work ceases during a recovery time.
- Successful work design incorporates appropriate rest breaks.

Energy Expenditure

- Energy expenditure is measured in kilocalories (kcal) per minute [70kcal = 1 watt]
- Energy expenditure is ~ 5 times oxygen consumption in liters.
- Oxygen consumption correlates with work effort.

> Energy Demands of Work

- Examples of typical energy demands of work (kcals/ minute)

Energy Demands and Posture

- Work posture has a substantial effect on the energy expenditure of performing the same task.
- Use of supports reduces energy demands.

Energy Demands and Posture

- How work is done determines the energy expenditure required by the activity.

Energy Costs of Grades of Work

- Estimated basal metabolic rate for an adult male is $\sim 2,300$ kcal/day.
- Estimated maximum energy output for an adult male is $\sim 4,800$ kcal/day.
- Consequently, estimated maximum work output for an adult male is $\sim 2,500 \mathrm{kcal} /$ day, which is $\sim 5 \mathrm{kcal} /$ minute.
- Recommended maintainable daily work output is $4 \mathrm{kcal} /$ minute.

Calculating Work and Rest Duration

- Many work activities exceed $5 \mathrm{kcal} /$ minute, so rest is needed to compensate.Rest time can be calculated from:
$R=(T(K-S)) /(K-1.5)$
$R=$ rest required (minutes)
$\mathrm{T}=$ total working time (minutes)
$\mathrm{K}=$ average $\mathrm{kcal} / \mathrm{min}$. work
$\mathrm{S}=\mathrm{kcal} / \mathrm{min}$ chosen as desirable standard
$1.5=\sim$ resting level (kcal/min)

Calculating Work and Rest Duration

- Example: How much rest is needed per hour (60 minutes) for someone sawing wood at $7 \mathrm{kcal} / \mathrm{min}$? Assume that $4 \mathrm{kcal} / \mathrm{min}$ is the desirable standard.
$R=(T(K-S)) /(K-1.5)$
$R=(60(7-4)) /(7-1.5)=180 / 5.5$
$R=33$ minutes
Calculating Work and Rest Duration
- Rest requirements for different energy expenditures

