Basic Biomechanics II DEA 3250/6510 Professor Alan Hedge

Definitions

- Scalar quantity quantity with magnitude only (e.g. length, weight)
- Vector quantity quantity with magnitude + direction (e.g. lifting a box)
- Coplanar vectors operating in the same plane.

Vector Addition

- Tip-to-tail method simple method using graphic representation of vectors.
 - Tip of 1st vector coincides with tail of the 2nd vector.
 - Tip of 1st vector is joined to tail of 2nd vector to create the resultant.

Vector Addition :

Tip-to-tail method

Vector Subtraction :

Tip-to-tail method

Vector Addition : >2 vectors

Force

Force – mechanical disturbance or load (e.g. push, pull, throw, kick, hold, squeeze etc.)

LAWS OF MOTION

Newton's 1st Law – a body that is originally at rest will remain at rest, or a body moving with constant velocity in a straight line will maintain its motion until an external resultant force is applied.

Inertia

- Inertia tendency for a body to maintain its state of rest or uniform motion in a straight line.
- The more inertia an object has the harder it is to start moving it from rest.

LAWS OF MOTION

Newton's 2nd Law – Acceleration of a body is directionally proportional to the net force acting on the body and inversely proportional to its mass.

LAWS OF MOTION

Newton's 3rd Law - for every action there is an equal and opposite reaction.

Definitions

Units of Force

- SI system:
 - ◆ Newton (N) [kilogram_meter/second²]
- CG system (cgs)
 - ◆ Dyne (dyn) [gram_centimeter/second²]
- British system (Imperial system)
 - Pound (Ib) [slug_foot/second²]

 $1 \text{ N} = 10^5 \text{ dyn} = 0.225 \text{ lb f}$

External Forces

 Hammering a nail, pushing a cart, kicking a ball etc. are all examples of external forces

External Forces

 Compression force (e.g. pushing the hand against the edge of an object).

External forces

■ Newton's 3rd law of motion.

Normal force

 Normal force acts perpendicular to a surface e.g. book on desk, sitting on chair, leaning back against a wall etc.

Tangential forces

Force applied on a surface in a direction parallel to the surface (e.g. frictional forces).

Tensile force

 Force that cause stretching/ elongation of a body (muscles produce tensile forces).

Collinear Forces

 All forces have a common line of action (e.g. tug of war, tendons).

Concurrent Forces

 Lines of action of force have a common point of intersection (e.g. surgical traction system).

Parallel Forces

■ Lines of action are parallel to each other (e.g. flexed arm).

Compressive Forces

Compressive forces depend on the load and the area.

Gravitational Force

- W = weight m = mass
- g = gravity

W = mg

```
SI = 9.81 m/s<sup>2</sup>
cgs = 981 cm/s<sup>2</sup>
Brit = 32.2 ft/s<sup>2</sup>
```

Pressure

Pressure measures the intensity of distributed loads (e.g. sitting on chair, foot on floor, finger on key etc.

Units of Pressure

- SI system:
 - ◆ Pascal (Pa) [kilogram/second²_meter]
- CG system (cgs)
 - Gram/centimeter_second² or dyne/cm²
- British system (Imperial system)
 - Pound per square foot (lb/ft²)

Center of Gravity

- Distributed load over a surface can be represented by a single force (equivalent force or concentrated load).
- Line of action of this force passes through a point called the center of gravity or center of mass.

Center of Gravity

Center of gravity plays an important role for lifting boxes.

Frictional forces

- Frictional force measures the resistance between the surfaces of sliding bodies in contact with each other.
- Usually measured as the coefficient of friction.

MOMENTS (TORQUE)

Force applied to an object can translate, deform and/or rotate the object (e.g. opening a door – torque – rotational force at hinges).

MOMENTS (TORQUE)

- When a perpendicular force is applied on a lever arm at some distance from its axis of rotation (fulcrum) there is a rotational tendency that is termed torque or moment.
- Torques generated by the body translate muscle contractions into mechanical work (e.g. movements of the fingers, arms, legs etc.)
 POSITIVE WORK
- Positive Work occurs whenever the product of muscle force and the force arm (F x FA) > the product of the resistance and

resistance arm (R x RA), and movement occurs (dynamic torque). Positive work occurs in situations such as lifting a heavy bag or box.

NEGATIVE WORK

Negative Work occurs whenever the force to move a load > muscle strength and muscle extension occurs. Negative work occurs in situation such as lowering a bag or box that is too heavy to lift.

STATIC TORQUE

Static Torque occurs whenever the product of muscle force and the force arm (F x FA) = the product of the resistance and resistance arm (R x RA). Static torque occurs in situations such as isometric exercises.

Calculating Simple Torque

The formula for simple torque is

 $T = F \times D \perp$ where T = torque

orce f

F

 $D \perp$ = perpendicular distance from axis of rotation

Example

Calculate the simple torque when a straight-arm lift is used to raise a 1Kg bag of sugar from a counter-top to a shelf 1 foot above the counter-top? Assume a shoulder-hand length of 0.5 m.

LEVER SYSTEMS

- First class lever fulcrum (center of rotation A) is located between the load (resistance R) and the force (muscle - F).
 - Resistance arm (RA) = distance from R to A
 - Force arm (FA) = distance from F to A
- When FA > RA there is a mechanical advantage.

First Class Lever System

- When looking down a microscope:
 - Fulcrum atlanto-occipital joint connecting head and spinal column
 - Resistance mass of head
 - Force contractions of trapezius muscles at back of neck and shoulders
- When head is very flexed RA > FA (no mechanical advantage)
- Microscope workers report neck and shoulder pain.

Second Class Lever System

- In a second class lever system the fulcrum is at one end of the force arm, and FA is always > RA.
- Only a few examples of such systems in the body (e.g. opening mouth when teeth are stuck together with gooey toffee).

Third Class Lever System

 Many examples of third class lever systems in the body. Here RA always > FA, so systems are at a mechanical disadvantage.

Third Class Lever System

 Lifting an object using the hand and pivoting at the elbow is an example of a third class lever system.