Effects of a Vertical Split-Keyboard on Posture, Comfort, and Performance

Timothy Muss Alan Hedge, Ph.D.

Cornell University

Dept. of Design and Environmental Analysis
NYS College of Human Ecology
Ithaca, NY 14853-4401.

Paper presented at the 43rd Annual Conference of the Human Factors and Ergonomics Society, Houston, TX, September 27 - October 1, 1999

Published in Proceedings of the Human Factors and Ergonomics Society 43rd

Annual Meeting Vol. 1, 496-500.

Research Goal

To determine the effects of an alternative keyboard design, a vertical split-keyboard (VK) with attached, width-adjustable palm supports on

- dynamic wrist posture
- self-reports of fatigue and discomfort
- typing performance

Results were compared to a traditional keyboard (TK).

The Prototype

The "Vertical" Features:

- QWERTY keypads:
 - 90° inclination, 0° rotation
- Attached, fixed side-mirrors
- Adjustable width (33-40 cm)

Hypotheses

The keyboard designers claim this design will

- Reduce ulnar deviation
- Reduce forearm pronation

with minimal effects on

- typing performance
- reports of comfort

Cornell Pilot Study

Pilot study suggested

 The "Vertical" prototype may encourage extreme wrist extension

Design Modification

Designers agreed to include a keyboard-mounted, vertical palm support in the evaluation.

Experimental Design

- Repeated measures
- Randomized block design
- 12 female, experienced touch-typists (>45WPM)
- 15-minute typing tasks
- Five counterbalanced conditions

Independent Variables

1. Keyboard

- VK with palm support
- TK with wrist rest

2. Chair

- Standard adjustable
- Specialized adjustable

© Frank DiMeo/Cornell University Photography

Dependent Variables

1. Dynamic wrist posture

 measured in degrees with electrogoniometer affixed gloves

2. Comfort

 Self-reports of discomfort and fatigue for 18 body segments.

3. Typing performance

 WPM and percent accuracy with Typing Tutor software

Experimental Conditions

Compare effects of keyboard and chair

- Standard office chair with TK and VK
- Specialized office chair with TK and VK

Compare the effects of with and without forearm supports

 Specialized office chair with chair-mounted forearm supports and VK

Experimental Conditions

Example 1: Standard office chair with TK

Experimental Conditions

Example 2:

Specialized office chair with chairmounted forearm supports and VK

 Mean wrist angles by keyboard

Significant main effect of KEYBOARD on:

- *Ulnar Deviation ($F_{1,11}=160.74$, p=.000)
- **Wrist Extension ($F_{1,11}$ =19.28, p=.001)

 Mean wrist angles by hand

*Significant main effect of HAND on Wrist Extension ($F_{1,11}$ =11.43, p=.006)

- Flexion/Extension
 - wrist angles for hand by keyboard interaction

*Significant interaction of KEYBOARD X HAND ($F_{1,11}$ =6.94, p=.023)

- Radial/Ulnar Deviation
 - wrist angles for hand by keyboard interaction

* Significant interaction of KEYBOARD X HAND (F_{1,11}=6.63, p=.026)

Potential Risk of Injury

- Flexion/Extension
 - % of movements in risk zones
 - HIGHEST (>20.6° flexion or extension)
 - ° TK: 12% vs. VK: 2% (F_{1,11}=12.23, p=.005)
 - LOWEST (<10.5° flexion or extension)
 - ° TK: 44% vs. VK: 80% ($F_{1,11}$ =6.40, p=.028)

Potential Risk of Injury

- Radial/Ulnar Deviation
 - % of movements in risk zones
 - HIGHEST (>20.6° radial or ulnar deviation)
 - ° TK: 25% vs. VK: <1% (F_{1,11}=19.22, p=.001)
 - LOWEST (<10.5° radial or ulnar deviation)
 - ° TK: 25% vs. VK: 78% (F_{1,11}=75.63, p=.000)

Potential Risk of Injury

- Radial/Ulnar Deviation
 - % of movements in risk zones in HIGHEST risk zone:
 - ° HAND X KEYBOARD (F_{1,11}=5.97, p=.033)
 - TK left: 39%, right: 12%
 - VK left and right: <1%</p>

Wrist Movement Plots

Left handTK

VK

Wrist Movement Plots

Right hand TK

VK

- Self-reports of comfort
 - Mean number of moderate/severe responses per subject for the VK were significantly *higher** than for the TK.
 - ° Fatigue
 - Right forearm (p=.043)
 - Right back of shoulder (p=.022)
 - left back of shoulder (p=.043)
 - Upper back (p=.022)
 - ° Discomfort
 - Right back of shoulder (p=.043)
 - Upper back (p=.031)

^{*} paired t-test, df=23

- Typing performance
 - Performance for the VK was significantly less than for the TK.
 - ° Average WPM
 - ° (F_{1,11}=27.84, p=.000)
 - -TK: 60 WPM vs. VK: 50 WPM
 - ° Average % accuracy
 - ° (F_{1,11}=7.47, p=.019)
 - -TK: 92% vs. VK: 89%

- The VK design as tested did reduce ulnar deviation and wrist extension as compared to the TK.
 - May reduce the risk of injury for VK users
 - Differences between hands may be due to
 - subjects were right-handed
 - typing tasks required the left hand to perform 57-59% of the keystrokes.

- The VK design as tested did reduce forearm pronation as compared to the TK.
 - ° VK nearly eliminated forearm pronation and may reduce risk of injury.

- The VK as tested did not improve user comfort as compared to a TK.
 - ° 83% of the subjects reported that the TK was more comfortable than the VK.
 - familiarity with the TK
 - radically different posture for the VK
 - Reports of discomfort and fatigue decreased when the VK was used with forearm supports, but were still more frequent than with the TK.

Comments of Comfort

- Overall, the mean number of reports of moderate/severe discomfort and fatigue per subject were relatively few. (VK: 0.17-0.33 out of 18)
- Ouration of the keyboarding exercises may have been too short for subjects to accurately perceive discomfort and/or fatigue.

- The VK design as tested did not improve typing performance.
 - ° VK performance for both WPM and percent accuracy was significantly lower than for the TK
 - Subjects were not given a training period for the VK

Future Research

- A long-term field study may
 - Confirm the beneficial effects of more neutral wrist postures
 - Determine more accurately reports of comfort
 - Provide results applicable to a wider range of user groups (i.e. gender, handedness, musculoskeletal injury, anthropometry)

Summary

- Based on the findings of the present study
 - 12 female, touch-typists; five
 15-min. typing tasks; laboratory setting

Keyboard	Wrist Posture	Comfort	Performance
Vertical Split-	•		
Traditional		•	•