Effects of Chair Armrest Design on Wrist Posture

Marisol Barrero

Alan Hedge, PhD

Timothy M. Muss

Cornell University

Department of Design & Environmental Analysis Ithaca, NY 14853.

Paper presented at the 43rd Annual Conference of the Human Factors and Ergonomics Society, Houston, TX, September 27-October 1, 1999

Published in the Proceedings of the Human Factors and Ergonomics Society 43rd Annual Conference, Vol. 1, pp. 584-588.

Acknowledgements

We would like to thank the Steelcase Corporation for their support with this study.

Background

- Armrests on ergonomic chairs were not common 10 years ago (reserved for executive/specialty models).
- Today, it is thought that sitting on a chair with armrests while typing provides countless benefits.
- Proliferation of general-use ergonomic chairs with different armrest designs

Research

- Working while sitting with the arms supported reduces strain to the body:
 - Minimizes upper limb muscle loads (Wells et al., 1997)
 - Minimizes shoulder loads (Feng et al., 1997)
 - Reduces spinal loads (Aaras et al., 1995)
 - Reduces loads on the hips and thighs while rising and sitting (Arborlius et al., 1992)
 - Reduces keying forces during typing (Rose, 1991)

Focus of Study

- When typing with no armrests, the arms naturally hang to the sides of the body and the elbows stay close to the body.
 - This encourages ulnar deviation of the wrists while typing on a traditional keyboard.
- Therefore, would typing with armrest-supported arms minimize deviated hand posture?
- ⇒ Focus of study: To test the effects of four different chair armrest designs on overall wrist posture while typing on a traditional keyboard

Subjects

- 24 subjects (12 females, 12 males) were selected from a larger pool of subjects based on stature.
- Subjects were assigned to groups of either men or women at the 5th percentile, 50th percentile, or 95th percentile in stature for their gender.
 - ⇒ 6 groups (4 Ss/group): Female 5th %ile, Female 50th %ile, Female 95th %ile, Male 5th %ile, Male 50th %ile, Male 95th %ile
- Average age: 20.6 ± 0.4 years (range: 18-29)
- Average weight: 61.3 ± 2.18 kg (range: 47.6-83.9)
- All right-handed, competent typists

Apparatus

- 4 different armrest designs (4 different chairs) with varying degrees of adjustability:
 - All height adjustable
 - Chair A: Rotation
 - Chair B: Pivot angle, width
 - Chair C: Pivot angle
 - Chair D: Pivot angle, width, depth

Chair A

- "Flipper" arms rotate 360°
- Gel-filled
- Vinyl-covered
- Broad, contoured shape

Chair B

- Arms angle from 14° inward to 21° outward.
- Width-adjustable by 3" per pad
- Padded, vinyl-covered arms
- Curved shape

Chair C

- Arms angle from 17.5° inward to 15° outward
- Slightly tapered to the rear
- Angled 5° from rear to front
- Padded and cloth covered
- 2 chair sizes

Chair D

- Arms rotate 21° inward and 21° outward in fixed increments
- Slide forward and backward through a 1.5" range
- Width-adjustable by 1.5" per pad
- Level, water-fall front arms
- Firmly padded
- Vinyl-covered

Apparatus

- Traditional keyboard was set on an adjustable level articulating tray attached to a freestanding office worksurface.
- Dynamic wrist posture (-flexion/+extension and ulnar/+radial deviation) was measured using gloves instrumented with electrogoniometers.
- Testing was conducted at Cornell University's Human Factors Laboratory.

Procedure

- Ss were tested individually by the same experimenter.
- Ss were given information on ergonomic keyboarding posture.
- Ss were given instruction and allowed to adjust every feature on each chair in order to feel comfortable.
- Ss were instructed to make use of chair armrests while typing.
- Ss' left and right upper extremities were measured for:
 - Shoulder/elbow length (SEL)
 - Elbow/wrist length (EWL)
 - Hand width (HD)
 - Hand length (HL)

Procedure

- Ss were randomly assigned to each condition.
- The order of administration of chair armrest and typing task was counterbalanced.
- Each 10-minute typing task was of comparable length and reading level (Typing Tutor software).
 - All were similar in requiring the left hand to perform 56-59% of the keystrokes.

Data Analysis

- Mean extension/flexion and ulnar/radial deviation angles were computed for each subject X condition X hand combination
 - Analyzed using a repeated measures analysis of variance.
- Anthropometric data was correlated with wrist posture using Pearson correlations (2-tailed).

Results: Wrist Extension

- No significant main effects of gender, stature, hand, and chair armrest on mean wrist extension.
- Overall, wrist extension for each armrest design was as follows:
 - Chair $A = 28.9^{\circ} \pm 1.7^{\circ}$
 - Chair B = $28.6^{\circ} \pm 1.6^{\circ}$
 - Chair C = $28.1^{\circ} \pm 1.4^{\circ}$
 - Chair D = $31.1^{\circ} \pm 1.7^{\circ}$

Results: Wrist Extension

- Significant interaction of hand X stature
 (F_{2.54} = 3.770, p = 0.043)
- Wrist extension:
 - L>R for 95th and 5th %ile stature groups
 - R>L for 50th %ile stature group

- No significant main effects of gender, stature, hand, and chair armrest on mean ulnar deviation.
- Overall, ulnar deviation for each armrest design was as follows:
 - Chair A = $18.7^{\circ} \pm 1.4^{\circ}$
 - Chair B = $20.3^{\circ} \pm 1.3^{\circ}$
 - Chair C = $18.8^{\circ} \pm 1.3^{\circ}$
 - Chair D = $18.2^{\circ} \pm 1.4^{\circ}$

- Significant interaction of stature X chair (F_{6.54} = 2.526, p = 0.031)
- For all chairs, 50th %ile group is lowest for ulnar deviation.
- Chairs A and C are lowest for ulnar deviation for the 50th %ile group.

- Significant interaction of hand X chair (F_{3.54} = 5.562, p = 0.002)
- For all chairs, R > L for ulnar deviation

Significant interaction of gender X hand X chair armrest

$$(F_{3.54} = 2.973, p = 0.040)$$

- Women: L tends to be > R for ulnar deviation
- Men: R > L for ulnar deviation

Anthropometric Correlations

- Correlations were computed between age, weight, the measured anthropometric dimensions for R and L arms (SEL, EWL, HW, HL), and wrist extension and ulnar deviation for each chair.
- Age was not significantly correlated with any variable.
- Weight was significantly correlated with several anthopometric dimensions.
- Several significant correlations between these dimensions
 - ⇒ especially for R arm

Left Hand

	SEL	EWL	HW	HL
Weight	.60**	.58**	.47*	.74***
SEL		.55**	.06	.76***
EWL			.15	.67***
HW				.18

^{*} P <0.05; ** P <0.01; *** P <0.001

Right Hand

	SEL	EWL	HW	HL
Weight	.63***	.66***	.66***	.70***
SEL		.68***	.54**	.72***
EWL			.71***	.84***
HW				.61***

^{*} P <0.05; ** P <0.01; *** P <0.001

Right Hand

- R Hand: Significant correlations among:
 - wrist extension for each chair armrest condition
 - ulnar deviation for each chair armrest condition
- R Hand: Significant negative correlations between:
 - wrist extension and ulnar deviation for each chair armrest condition

Right Hand: Wrist Extension

	В	C	D
Α	.93***	.86***	.84***
В		.83***	.75***
С			.84***

^{*} P <0.05; ** P <0.01; *** P <0.001

Right Hand: Ulnar Deviation

	В	C	D
Α	.83***	.90***	.82***
В		.79***	.82***
С			.76***

^{*} P <0.05; ** P <0.01; *** P <0.001

Right Hand

	Ulnar D.			
Ext.	A	В	С	D
Α	41*	43*	54**	44*
В	32	46*	49*	38
С	34	35	48*	39
D	40*	35	46*	51*

^{*} P <0.05; ** P <0.01; *** P <0.001

Left Hand

- L Hand: Significant correlations among:
 - wrist extension for each chair armrest condition
 - ulnar deviation for each chair armrest condition
- No significant correlations between wrist extension and ulnar deviation for any condition.

Left Hand: Wrist Extension

	В	С	D
Α	.76***	.75***	.72***
В		.82***	.69***
С			.77***

^{*} P <0.05; ** P <0.01; *** P <0.001

Left Hand: Ulnar Deviation

	В	C	D
Α	.93***	.94***	.90***
В		.90***	.88***
С			.90***

^{*} P < 0.05; ** P < 0.01; *** P < 0.001

Weight

 Chair B: Significant negative correlation between weight and R hand ulnar deviation (r = -0.42, n = 24, p = 0.039)

No correlations between weight and any L hand wrist measures.

Summary of Results

- Wrist posture (extension, ulnar deviation) was comparable for the four chair armrest designs.
 - ⇒ Armrests may not exert a significant effect on typing wrist posture.
- Some effects of gender, stature, and hand on wrist posture
- Evidence of asymmetry effects: Wrist posture measures were intercorrelated for R hand but not L hand.

Limitations/Future Research

- Chair armrests compared in this study are among the best available.
- Typing tasks were only 10 minutes long.
- Confounding variables exist within overall chair designs.
 - ⇒ 1 chair with 4 armrests v. 4 chairs with 4 armrests
- Subjects adjusted their chairs and workstations to optimal positions, which may have reduced postural variability.

Limitations/Future Research

Caution:

On average, wrist postures were high and well outside of a neutral zone of movement.

⇒ Good typing posture cannot be simply achieved with a good chair with good armrests.

Conclusion

- All chair armrests tested in this study were equal in terms of wrist posture.
- There is a need for a field study.
- Chairs need to be taken into the context of furniture.

