Ergonomic Redesign For Checkout Stations Part I

Presentation created by the Students of DEA 470/670: Applied Ergonomic Methods

Cornell University

Under the Direction of Professor Alan Hedge
Summary of Typical Checkout Routine for Cashier

<table>
<thead>
<tr>
<th>TASKS</th>
<th>ISSUES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check-in with Register</td>
<td>Downward Bending</td>
</tr>
<tr>
<td>• Place cash box lid into storage area.</td>
<td>Factor: Posture</td>
</tr>
<tr>
<td>Preparation of Bag</td>
<td>180º Torso Rotation</td>
</tr>
<tr>
<td>• Locate bag from rear platform.</td>
<td>180º Return Rotation</td>
</tr>
<tr>
<td>• Set bag on pedestal.</td>
<td>Downward Bending</td>
</tr>
<tr>
<td>• Open mouth of bag.</td>
<td>Factor: # Bags</td>
</tr>
</tbody>
</table>
Summary of Typical Checkout Routine for Cashier

TASKS

Access & Register Items
- Remove divider.
- Reach and swipe items into scanner.

Bag Groceries
- Place items onto bottom of bag.

ISSUES

- Forward Bending
- Wrist Twisting
 Factor: # and Load of Items

- Downward Bending
 Factor: # and Load of Items
Summary of Typical Checkout Routine for Cashier

TASKS

Input Transaction Codes
- Type codes into keyboard.

Place Bag into Cart/Platform
- Lift bag from pedestal.
- Place bag into cart.
- Place bag onto platform.

ISSUES

- Wrist Bending
 - Factor: Posture

- Forward/Backward Bending

- 180º Torso Rotation
 - Factor: Load of Bag
Checkout Stand Task Times

<table>
<thead>
<tr>
<th>ITEMS TASKS</th>
<th>1 ITEMS</th>
<th>10 ITEMS</th>
<th>25 ITEMS</th>
<th>50 ITEMS</th>
<th>100 ITEMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scan Items & Bag</td>
<td>2.5 sec.</td>
<td>25 sec.</td>
<td>62.5 sec.</td>
<td>125 sec.</td>
<td>250 sec.</td>
</tr>
<tr>
<td>Full Bag to Cart</td>
<td>3 sec.</td>
<td>6 sec.</td>
<td>15 sec.</td>
<td>30 sec.</td>
<td>60 sec.</td>
</tr>
<tr>
<td>Payment Transact</td>
<td>51 sec.</td>
<td>51 sec.</td>
<td>51 sec.</td>
<td>51 sec.</td>
<td>51 sec.</td>
</tr>
<tr>
<td>Total Transact</td>
<td>56.5 sec.</td>
<td>82 sec.</td>
<td>128 sec.</td>
<td>206 sec.</td>
<td>361 sec.</td>
</tr>
</tbody>
</table>

All times represent averages.
Checkstand Task Times Graph

Number of Items vs. Time in Seconds

- **Scan**
- **Fill Cart**
- **Payment**
- **Total**

<table>
<thead>
<tr>
<th>Number of Items</th>
<th>Scan</th>
<th>Fill Cart</th>
<th>Payment</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50</td>
<td>20</td>
<td>10</td>
<td>80</td>
</tr>
<tr>
<td>10</td>
<td>100</td>
<td>50</td>
<td>20</td>
<td>170</td>
</tr>
<tr>
<td>25</td>
<td>150</td>
<td>100</td>
<td>30</td>
<td>280</td>
</tr>
<tr>
<td>50</td>
<td>200</td>
<td>150</td>
<td>40</td>
<td>390</td>
</tr>
<tr>
<td>100</td>
<td>250</td>
<td>200</td>
<td>50</td>
<td>500</td>
</tr>
</tbody>
</table>
Left Arm Range:
5th Percentile Female & 95th Percentile Male
Right Hand Range:
95th Percentile Male & 5th Percentile Female
Left Arm Range:
50th Percentile Male & Female

© Cornell University, March 1999
Right Hand Range:
50th Percentile Male & Female
Ergonomic Problems Apparent From Computer Modeling

• Bottom of the bagging ledge is below arm’s reach of well over 95% of the population.

• In order to place an object into the bag, cashiers must bend at the waist.

• Smaller women may have difficulty grasping heavy objects at the end of the conveyor belt, as this is about the extent of their reach. To compensate they will probably bend forward at the waist.
Summary of Dimension Data

- 4 types of check-out stations:
 - standard
 - tall
 - handicap
 - express
- Random arrangement of check-out stations
- Handicap stations are of a lowered height, have wider aisles, and lowered credit swipe machines.
- Tall stations are of a higher height and have taller credit swipe machines.
- 2 shopping cart sizes (small and large).
Ergonomic Analysis of Front-end Checkout Design
Use & Misuse of Checkout Stands

- Inconsistency of Stance
- Keyboard Placement
- Bag Handling
- Placement of Accessories
- Physical limitation of Stands
- Scanner Positioning
- Awkward Card Swiping System
- Employee Assignment
Comparative Analysis: Scanning Task

Scanner Type:
- Combination Vertical and Horizontal Scanner

Keypad Location:
- Parallel to conveyor belt

Monitor Location:
- Varied (Parallel and/or Side)
Diagram of Side Stance Design
Comparative Analysis: Cashier Bagging

- Fold-down Bag Holder
- Posture Issues:
 - Bending:
 - Putting Items into Bag
 - Putting Bags Into Cart
- Customers had to lift bag into cart (OR) Cashier leaned over to put bag in cart
- Bags are parallel and adjacent to conveyor belt
Comparative Analysis: Bagger Bagging

- Second Conveyor Belt
- Bag Height: Adjustable (Around Thigh Height)
- Bagging Station: Pull-Out Bag Tray
Graph of Task Times

Time (Seconds)

Items

Scanning
Bagging
Ergonomic Redesign For Checkout Stations Part II

Presentation created by the Students of DEA 470/670: Applied Ergonomic Methods
Cornell University
Under the Direction of Professor Alan Hedge
Topics

• Scanning
• Keyboard
• Bagging
• Card Swipe
• Peripherals
Scanning
Posture Issues In Current Scanner Design

<table>
<thead>
<tr>
<th>Location</th>
<th>Issues</th>
</tr>
</thead>
</table>
| Back | - End of scanner bed outside reach envelope
 | - Toggle switch for belt outside reach envelope |
| Wrist | - Twisting of items for repeated scanning
 | - Shape of hand scanner |
| Neck | - Looking down at belt and scanner bed causes neck flexion |
Redesign Options for Current Footprints

• Back
 – Narrow scanner
 – Relocate toggle switch for belt within reach envelope

• Wrist
 – Bi-optic scanner for decrease in reading errors
 – Different shaped hand scanners:
 • Pen
 • Palm-grip (like a computer mouse)

• Neck
 – Height of transport 100-75mm below average elbow height
 – More accurate scanner would reduce neck flexion
3/4 Stance Design Layout

- Register moved back: 90 degree angle to scanner bed
- Auxiliary table altered to allow for cart mobility
- Allows for a variety of bagging options
Key Ring Scan Tags

- May require cashier to take entire set of keys
- Wear caused by repeated scraping of metal on scanner bed
- Awkward grip on key ring causes wrist flexion
Keyboard
Advantages With Current Design

• The current keyboard location is within the right hand reach envelope of most of the U.S. population.
 – a 5ft tall woman and a 6ft 1in male
 – Approximately 97% of males and 97% of females
Avantages With Current Design

- Keyboard has functional coding of keys through color and tactile coding, grouping, and auditory feedback
- Free-standing keyboard
Problems with Current Keyboard Placement

- Placement of current keyboard causes various degrees of wrist extension in people of varying heights
- Not height adjustable
 - current height is 40 inches off floor (standard check-stand)
- Lack of wrist support
Suggested Improvements

- Minimize consistent wrist flexion and extension which over time may cause cumulative trauma disorders.
- Adjustable keyboard tray
 - Height (38-46 in. range)
 - Angle (0-30 degrees range)
 - Pictogram showing adjustment capability and neutral hand positioning
- Adjustable and retractable wrist supports
 - Cushioning should minimize the pressure on the medial nerve
- Training
Bagging
Bagging: Problems

• Bagger repeatedly bends forward from waist to fully open bags; can cause lower back strain.
• Variation in bagger’s height can compound bending problem.
• Bags must be pulled apart each time due to static between plastic.
• Location of paper bags causes cashier to bend and/or rotate for access and retrieval.
• Paper bags do not have an ideal packaging placement.
Bagging: Solutions

- Height-Adjustable/ Weight-Sensitive Platform
- Rotational Multi-Bag Platform
Rotational Multi-Bag Platform
Rotational Multi-Bag Platform
Bagging: Solutions

- Height-Adjustable/ Weight-Sensitive Platform
- Rotational Multi-Bag Platform
- Retractable Sliding Cart Doors
- Perforated Bag Dispenser System
Bagging: Solution Evaluation

ADVANTAGES

• eliminates forward flexion required for placing objects into bag and cart.
• accommodates various heights
• transfers worker’s load to rotational device
• allows simultaneous bagging
• eliminates side bending and flexion
• facilitates in opening of bags--thereby, lessening transaction time and manual strain

DISADVANTAGES

• requires a greater amount of space
• necessitates change in footprint design
• implies the need for re-training of employees
Card Swiping
Card-swipe Problems

- **Problems:**
 - **Cashier**
 - Cashier must twist spine to help customer.
 - Cashier must overextend to reach around card machine.
 - **Customer**
 - Customer must turn wrist in awkward posture when swiping card.
 - Awkward body posture/position.
 - Non-ambidextrous design
Card-swipe Goals

• Goals:
 – Enhance usability of design so that customer doesn’t need to ask cashier for help.
 – Lessen ergonomic issues for customer & cashier (i.e. wrist posture, arm reach)
 – Lessen time needed to pay cashier.

• Design Suggestions:
 – Place card-swipe machine at functional height.
 – Adjustable check-writing surface.
 – Lettered or color-coded buttons
 – Pictogram on buttons (i.e. MasterCard)
Card-swipe Design Suggestions

• If card-swipe machine faces customer:
 – Locate keyboard on back & front (or swivel).
 – Locate card swipe vertically on the right side.

• If card-swipe machine is placed flat on table:
 – Vertical swipe on table to avoid wrist flexion.
 – Color coding on the keypad for cashier.

• Other possibilities:
 – Instead of swipe, slide card in and out of machine.
 – Place Wegman’s sticker on credit cards to avoid having to swipe two cards (i.e. Visa & Wegman’s).
Peripherals and Stance
Peripherals and Stance

- **Ergonomic issues of standing work**
 - Rest Schedules
 - If the work surface needs constant visual attention, neck pain can result.

- **Position of peripheral objects**
 - Garbage Cans (3 of them)
 - Paper Towels
 - Back-Up Bags (both paper and plastic)
 - Chart with Produce Codes

- **Better possible use of vertical space**

- **Allocation of storage by weight and frequency of use**

- **Working with/around the bagging station**
 - Access to station requires 180 degree turning.
 - Station makes access to storage below the register difficult.
Getting to the Back-Up Bags and Paper Bags

• Access of paper bags requires body twisting. This could possibly be changed by placing the stack of bags upright, just in front of and below the cash register.

• Back up paper bags can be stored upright behind this, and back-up plastics can be stored next to it.

• This would greatly decrease, and possibly eliminate, the distance between the storage space and the open space of the heavy paper bags.

• Benefits:
 – Less chance of injury/pain.
 – Cashier can offer quicker paper-bagging service.
Stance: Code Chart

Stance

Code Chart
1. Problem with the chart
2. Possible solutions

1. Light Reflection
 2. a) Matted with non-gloss
 2. b) Rolodex on bristol
 2. c) "smart" system

1. Placement: wrist and neck movement and weight
 2. a) hanging, in front, higher
 2. b) not on a card at all

1. Visibility
 2. a) Big readable font (heading)
 2. b) "smart" system
 2. c) combo system
Conclusion: Next Steps

• Solutions range from inexpensive, quick-fix options to more extensive, ground-zero redesigns

• Future Endeavors:
 – Trial implementation of solution(s)
 • Evaluate organizational impact of proposed changes
 – Follow-up post-evaluation
Thank You!

• To Wegmans for giving us a real-life situation to investigate
• To Alan Hedge for providing us with the knowledge to conduct this project

We hope to work with you again in the future!