Effects of an Ergonomic Intervention on Musculoskeletal Discomfort among Office Workers

Mary Rudakewych, Lisa Weitz

Dept. Personnel Health & Safety, State of NJ, Trenton, NJ.

&

Alan Hedge

Cornell University,

Dept. Design & Environmental Analysis, Ithaca, NY.

Acknowledgements

- Office of Information Technology, State of New Jersey
- Adele Ebeid, Chief Information Officer, OIT
- Laurie Golding, OIT
- NJ Department of Personnel
- Cornell University

Study Goals

• Evaluate the effects of an ergonomic intervention on the self-reported health and well-being of personnel.

 Investigate non-environmental correlates of musculoskeletal discomfort among computer users.

Survey Sample

- 1,100 employees retrofitted and participated in entire ergonomics program
- 599 responded to pre-intervention survey
- 534 responded to post-intervention survey (approx. 12 months period)
- 195 only pre-intervention survey
- 130 only post-intervention survey
- 356 matched sets (by July deadline for HFES)
- 404 matched cases (by end of August).
- ~66% participated in some aspect of the study.

Study Design

- Sample selection
 - 356 workers matched pre-and post-intervention
- Pre-retrofit survey
 - questionnaire administered during ergonomic training (phased over a 4 month period from May through September, 2000) and while the retrofit was being implemented
- Post-retrofit survey
 - questionnaire administered in June 2001

Ergonomic Intervention

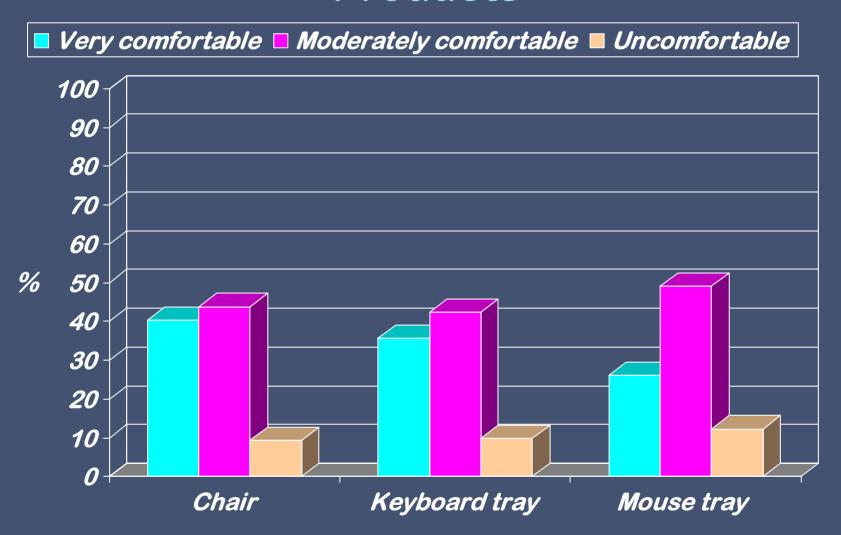
- All study participants provided with:
 - Negative slope keyboard tray
 - Upper mouse platform that pivots over keyboard tray
 - Ergonomic chair
 - Ergonomic training
- Upon request and following training, some study participants provided with:
 - Document holder
 - Anti-glare screen filter
 - Assistance in adjustments of workstations

Participant Characteristics

	Men	Women
Gender (%)	47.8	52.0
Mean Age (yrs)	46.5	49.0
Mean Height (cm)	179.8	163.1
Mean Weight (kg)	87.9	64.5
Right-handed (%)	97.3	97.6
Years worked	17.6	15.6
Hours per week	35.3	34.8

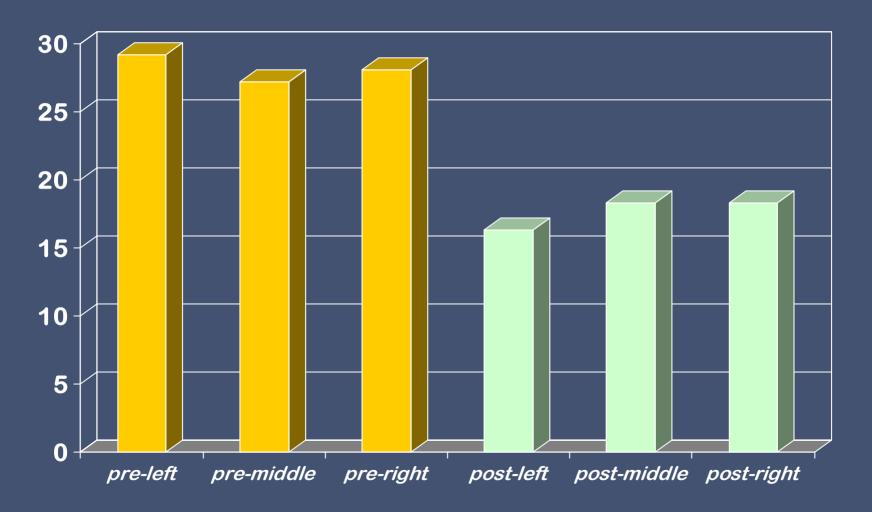
Participant Computer Use

	Men	Women
Computer work (mean # days/week)	5.3	5.2
Computer work (mean hours/day)	5.5	6.0
Touch typists (%)	51.1	14.2
Fast typing speed (%)	8.7	26.0
Glasses/contact lens (%)	70.3	70.0
Bifocal/progressive lens (%)	29.2	30.0

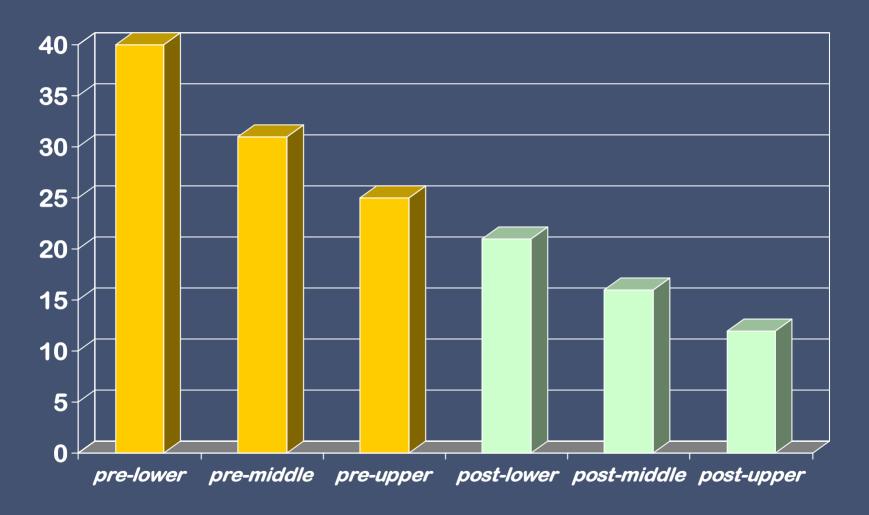

Rudakewych, M., Valent-Weitz, L. and A. Hedge (2001) Effects of an ergonomic intervention on musculoskeletal discomfort among office workers. Proceedings of the Human Factors and Ergonomics Society 45th Annual Meeting, Vol. 1, 791-795.

Continuous Computer Use

Mean duration of work without a rest break.


Time interval	Keyboard	Mouse
< ½ hr. (%)	18.3	43.5
½-1 hr. (%)	32.6	28.9
1-2 hrs. (%)	29.2	13.2
2-3 hrs. (%)	14.9	10.4
3-4 hrs. (%)	1.4	1.1

Comfort Ratings for Ergonomic Intervention Products


Rudakewych, M., Valent-Weitz, L. and A. Hedge (2001) Effects of an ergonomic intervention on musculoskeletal discomfort among office workers. Proceedings of the Human Factors and Ergonomics Society 45th Annual Meeting, Vol. 1, 791-795.

Neck Discomfort

Rudakewych, M., Valent-Weitz, L. and A. Hedge (2001) Effects of an ergonomic intervention on musculoskeletal discomfort among office workers. Proceedings of the Human Factors and Ergonomics Society 45th Annual Meeting, Vol. 1, 791-795.

Back Discomfort

Rudakewych, M., Valent-Weitz, L. and A. Hedge (2001) Effects of an ergonomic intervention on musculoskeletal discomfort among office workers. Proceedings of the Human Factors and Ergonomics Society 45th Annual Meeting, Vol. 1, 791-795.

Musculoskeletal Discomfort

Rudakewych, M., Valent-Weitz, L. and A. Hedge (2001) Effects of an ergonomic intervention on musculoskeletal discomfort among office workers. Proceedings of the Human Factors and Ergonomics Society 45th Annual Meeting, Vol. 1, 791-795.

Change in Musculoskeletal Discomfort

	% decrease
Eyes	44.5
Shoulder	42.4
Upper arm	45.5
Forearm	42.0
Elbow	47.3
Hand	38.0
Wrist	39.5
Thigh	21.2
Lower leg	31.3
Foot	44.7
Neck	37.3
Back	49.1

Rudakewych, M., Valent-Weitz, L. and A. Hedge (2001) Effects of an ergonomic intervention on musculoskeletal discomfort among office workers. Proceedings of the Human Factors and Ergonomics Society 45th Annual Meeting, Vol. 1, 791-795.

Conclusions

- Results show an average 40% decrease in reports of musculoskeletal discomfort maintained some 12 months after the ergonomic intervention.
- Results show that an ergonomic intervention that combines engineering controls (keyboard/mouse tray; chair, etc.) and work-practice controls (training) is a cost effective way of reducing musculoskeletal problems in an office.

Conclusions

- Results reinforce the value of a programmatic approach to ergonomics.
- A successful ergonomics program requires the following key items:
 - Management support (i.e. funding)
 - Program management by ergonomic experts
 - Assessment of needs Ergonomic evaluations (facility, workstation)
 - Ergonomic intervention corrective action
 - Training (management and employees)
 - Tracking progress of program and individuals through surveys etc.
 - Employee participation